create account

MOLECULES IN INTERSTELLAR SPACE AND A CLOSE LOOK AT ELECTRONS #4 by empressteemah

View this thread on steemit.com
· @empressteemah ·
$10.34
MOLECULES IN INTERSTELLAR SPACE AND A CLOSE LOOK AT ELECTRONS #4
<p class="MsoNormal"><span lang="">Hello, great readers. This is the concluding
part of my article on <b>MOLECULES IN
INTERSTELLAR SPACE AND A CLOSE LOOK AT ELECTRONS. </b>It is a promise to
@chappertron as regards his request that I give a summary of the entire article
on behalf of @steemstem. But, I felt rather than writing a summary, why don’t I
give him the honour and respect of writing an entirely comprehensive article on
the request. Also using the opportunity to discuss the electron configuration
and its relationship to the Periodic table. I hope you all find it interesting.
<o:p></o:p></span></p><p class="MsoNormal"><span lang="">So, why don’t I pick up, specifically, from
where I stopped in the previous </span><a href="https://www.steemstem.io/#!/@empressteemah/molecules-in-interst-1562320779" target="_blank"><b>article</b></a><span lang="">, by shedding more light on the evidence
for subshells from the first ionization energies?</span></p><p class="MsoNormal" style="text-align: center; "><img src="https://res.cloudinary.com/drrz8xekm/image/upload/v1563001929/yskksjutcnurvmmuwfud.jpg" data-filename="yskksjutcnurvmmuwfud" style="width: 442px;"><span lang=""><o:p><br></o:p></span></p><p class="MsoNormal" style="text-align: center; "><a href="https://commons.wikimedia.org/wiki/File:Neon_orbitals.JPG" target="_blank"><sup>The shapes of the first five atomic orbitals. Mortadelo2005, Public Domain</sup></a><span lang=""><o:p><br></o:p></span></p><h2><span lang="">THE EVIDENCE FOR SUBSHELLS FROM FIRST IONIZATION ENERGIES<o:p></o:p></span></h2><p class="MsoNormal"><span lang="">The evidence for subshells also comes from
ionization energies. If we plot the first ionization energy of different
elements against their atomic numbers, a regular pattern emerges. The repeating
pattern of a property is called <b>periodicity</b>.
It forms the basis of the Periodic Table, which I’ve written extensively about </span><a href="https://www.steemstem.io/#!/@empressteemah/the-history-of-mendeleev-and-the-development-of-the-periodic-table" target="_blank"><b>here</b></a><span lang="">.</span></p><p class="MsoNormal" style="text-align: center; "><img src="https://res.cloudinary.com/drrz8xekm/image/upload/v1563002499/mog7gh2p0plvhmvgoyf7.png" data-filename="mog7gh2p0plvhmvgoyf7" style="width: 512px;"><span lang=""><o:p><br></o:p></span></p><p class="MsoNormal" style="text-align: center; "><a href="https://commons.wikimedia.org/wiki/File:First_Ionization_Energy.svg" target="_blank"><sup>Periodic trends for ionization energy (Ei) vs. atomic number.  Sponk (PNG file) Glrx (SVG file) Wylve (zh-Hans, zh-Hant), CC BY 3.0</sup></a><span lang=""><o:p><br></o:p></span></p><p class="MsoNormal"><span lang="">Several features of the graph point to the
existence of subshells. let’s look at the eight elements lithium to neon, which
have electrons in shell 2. We would expect an increase in the first ionization
energy as the atomic number increases. This is because the number of protons in
the nucleus increases, which increases the nuclear charge. If the electrons
were all in the same energy level, we would expect the graph to be a straight
line, showing a steady increase in the first ionization energy as the number of
protons in the nucleus increases.<o:p></o:p></span></p><p class="MsoNormal"><span lang="">The 2,3,3 pattern of first ionization energies
tells us that the electrons removed from this second electron shell are not
arranged such that they are all in the same energy level.<o:p></o:p></span></p><p class="MsoNormal"><span lang="">From reading this section on subshells, you
may be able to explain the 2,3,3 pattern. Refer to the <b>figure</b> as you read on.<o:p></o:p></span></p><p class="MsoNormal"><span lang="">The first part of the 2,3,3 pattern is caused
by electrons being taken from the 2s subshell. There is an increase in first ionization
energy from Li to Be because Be has an extra proton attracting the outer
electrons. Then, instead of a further increase from Be to B, there is a
decrease in first ionization energy as the electron in B is taken from the 2p
subshell: this electron is at a higher energy level than the 2s subshell and
further from the nucleus.<o:p></o:p></span></p><p class="MsoNormal"><span lang="">In moving from B to N. There is the expected
increase in first ionization energy, but another dip occurs at O. After N. The
electrons in the 2p subshell start to pair up. (This pairing of electrons in
subshells is covered in some paragraphs below.) There is more electrostatic
repulsion between paired electrons, which means that the fourth electron in the
2p subshell is easier to remove, explaining the dip at O.<o:p></o:p></span></p><p class="MsoNormal"><span lang="">You can see the same pattern repeated for
elements starting with Na when the next shell is being filled. After Mg, there
is a drop at Al, and another drop at S. The 3p subshell is complete at Ar.<o:p></o:p></span></p><p class="MsoNormal"><span lang="">After this, there is an interruption to the
2,3,3 pattern. There is the expected increase from K to Ca as electrons are
taken from the same 4s subshell. Then we have electrons removed from the
slightly higher energy 3d subshell&nbsp;before the 3,3 pattern returns, beginning with
Ga, as the 4p subshell electrons are removed.<o:p></o:p></span></p><h2><span lang="">ATOMIC ORBITALS<o:p></o:p></span></h2><p class="MsoNormal"><span lang="">Another great scientist of the 20th century
was Werner Heisenberg, whose work has clarified our current model of the way
electrons are arranged in atoms. In 1927, he said that you could determine
either the speed of an electron or its position, but not both at the same time.
This is now known as the <b>Heisenberg
uncertainty principle</b>. While it applies to any particle, it becomes
important only when the particle is very tiny. Heisenberg’s mathematics has
enabled electron arrangements to be worked out in even more detail.<o:p></o:p></span></p><p class="MsoNormal"><span lang="">We have seen that lines appear in the emission
spectra of excited atoms, representing the wavelengths (energies) of photons
emitted by excited electrons returning to lower energy levels. When this light
is passed through a magnetic field, even more lines show up, and these are
evidence of what we can now call <b>atomic</b>
<b>orbitals</b>.<o:p></o:p></span></p><p class="MsoNormal"><span lang="">An atomic orbital is a region around the atom
in which there is a high probability of finding an electron at any moment in
time.<o:p></o:p></span></p><p class="MsoNormal"><span lang="">Advanced mathematics can be used to plot the
probable position of an electron at one instant, followed by further plots at
other instants until an <b>electron</b> <b>density</b> <b>plot</b> or electron <b>density</b>
<b>map</b> is produced. The existence of
electrons in orbitals helps the chemistry of atoms and molecules to fall into
place, and so is tremendously useful. In the s subshell there is only one orbital,
the s orbital. If we draw around the region of the atom where the electron spends
most of its time, then we find the s orbital is spherical.<o:p></o:p></span></p><p class="MsoNormal"><span lang="">In the boundary surface of 1s, 2s and 3s
orbitals, in each case, the imaginary ‘surface’ is the limit of the space in
which the 1s, 2s and 3s electrons are likely to be found. Also in each case the
orbital is centred on the nucleus, and the boundary represents a 90 per cent
probability of finding an electron within it.<o:p></o:p></span></p><p class="MsoNormal"><span lang="">There are three p orbitals in the p subshell.
They are dumb-bell shaped and arranged at right angles to each other, with the
nucleus in the centre of each dumb-bell.<o:p></o:p></span></p><p class="MsoNormal"><span lang="">The d subshell contains five d orbitals, but there
are seven f orbitals in the f subshell.<o:p></o:p></span></p><h2><span lang="">SPINNING ELECTRONS<o:p></o:p></span></h2><p class="MsoNormal"><span lang="">Each atomic orbital can hold a maximum of two
electrons. As the electrons move in their orbitals, they are also spinning on their
own axes. If there are two electrons, one spins clockwise, while the other
spins anticlockwise. This keeps the repulsion of the electrons to a minimum.
Electron spin is often represented by box diagrams, in which each box is an
atomic orbital and arrows do represent the electrons spinning in opposite
directions as shown below.</span></p><p class="MsoNormal" style="text-align: center; "><img src="https://res.cloudinary.com/drrz8xekm/image/upload/v1563002819/em7ne6xkidlfcysfevui.png" data-filename="em7ne6xkidlfcysfevui" style="width: 527.5px;"><span lang=""><o:p><br></o:p></span></p><p class="MsoNormal" style="text-align: center; "><a href="https://commons.wikimedia.org/wiki/File:Electron_orbitals.svg" target="_blank"><sup>Electron orbitals. Patricia.fidi - own work, Public Domain</sup></a><span lang=""><o:p><br></o:p></span></p><h2><span lang="">ELECTRON ADDRESSES<o:p></o:p></span></h2><p class="MsoNormal"><span lang="">So we are now in a position to give <i>addresses</i> to electrons. In the same way
that a letter can be addressed with the country, the town. The street and the
house number so that it arrives at only one unique destination, so we can give
a unique ‘address’ to represent the state of an electron in an atom. The idea
of unique state for every electron is known as the <b>Pauli exclusion principle.</b><o:p></o:p></span></p><p class="MsoNormal"><span lang="">According to this principle, an electron is
precisely defined by:<o:p></o:p></span></p><ul><li><span lang="">its shell – the main energy level;</span></li><li>its subshell – the sub-energy level division
of the shell:</li><li>its atomic orbital – each subshell possesses
at least one atomic orbital, and all orbitals in a subshell possess the same
energy;</li><li>and its direction of spin – a maximum of two
electrons of opposite spin can occupy one atomic orbital: orbitals in the same
subshell are singly filled first, with electrons of parallel spin.</li></ul><p class="MsoNormal">In the electron configuration of the magnesium atom in its ground
state (I would have loved to share the image but it's copyrighted).<span lang="">&nbsp;Remember, this is the lowest energy state of
the atom, so the<b> e</b>lectrons occupy
orbitals in subshells of the lowest possible energy.<b><o:p></o:p></b></span></p><p class="MsoNormal"><span lang="">Notice that:<o:p></o:p></span></p><ul><li><span lang="">the s subshells contain one s atomic orbital;</span></li><li>the p subshells contain three p orbitals;</li><li>each orbital contains a maximum of two
electrons with opposite spin.</li></ul><h2><span lang="">THE ELECTRON CONFIGURATIONS OF SOME ELEMENTS<o:p></o:p></span></h2><p class="MsoNormal"><span lang="">Let us now look at how electrons fill orbitals
in an atom. The orbitals of lowest energy are occupied first, and this is known
as the <b>aufbau</b> <b>principle</b>. Aufbau is a German word for building up. So when you are
building up the electron configuration of an element, remember that each electron
goes into the lowest energy orbital available.</span></p><p class="MsoNormal" style="text-align: center; "><img src="https://res.cloudinary.com/drrz8xekm/image/upload/v1563003865/yzr4h8ywqhjcqonienzw.png" data-filename="yzr4h8ywqhjcqonienzw" style="width: 527.5px;"><span lang=""><o:p><br></o:p></span></p><p class="MsoNormal" style="text-align: center; "><a href="https://commons.wikimedia.org/wiki/File:Periodic_Table_Armtuk3.svg" target="_blank"><sup>The Periodic Table. Armtuk, CC BY-SA 3.0</sup></a><span lang=""><o:p><br></o:p></span></p><h4><span lang="">Hydrogen (Z = 1)<o:p></o:p></span></h4><p class="MsoNormal"><span lang="">The lowest energy orbital is in the first
shell that has a principal quantum number n = 1 and is an s orbital, so it is
written 1s.<o:p></o:p></span></p><p class="MsoNormal"><span lang="">electron configuration 1s<sup>1</sup><o:p></o:p></span></p><h4><span lang="">Helium (Z = 2)<o:p></o:p></span></h4><p class="MsoNormal"><span lang="">electron configuration 1s<sup>2</sup><o:p></o:p></span></p><p class="MsoNormal"><span lang="">Note: when you say 1s<sup>2</sup>, it is ‘one
s two’, not ‘one s squared’!<o:p></o:p></span></p><h4><span lang="">Lithium (Z = 3)<o:p></o:p></span></h4><p class="MsoNormal"><span lang="">electron configuration 1s<sup>2</sup> 2s<sup>1</sup><o:p></o:p></span></p><p class="MsoNormal"><span lang="">The lithium atom has three electrons, and the
aufbau principle tells us that the third electron will occupy the next orbital
of lowest energy, which is in the n = 2 shell, so it will start with 2 and be
an s orbital, and therefore it is 2s.<o:p></o:p></span></p><h4><span lang="">Beryllium (Z = 4)<o:p></o:p></span></h4><p class="MsoNormal"><span lang="">electron configuration 1s<sup>2</sup> 2s<sup>2</sup><o:p></o:p></span></p><p class="MsoNormal"><span lang="">Next, we come to filling the p subshell.
Notice that each orbital is occupied singly at first. This is because two electrons
in the same orbital exert a repulsion that raises the energy of a doubly filled
orbital above that of a singly filled one. Notice that the spins are all in the
same direction. The repulsion that results helps to keep the electrons apart.<o:p></o:p></span></p><h4><span lang="">Boron (Z = 5)<o:p></o:p></span></h4><p class="MsoNormal"><span lang="">electron configuration 1s<sup>2</sup> 2s<sup>1</sup>
2p<sup>1</sup><o:p></o:p></span></p><h4><span lang="">Carbon (Z = 6)<o:p></o:p></span></h4><p class="MsoNormal"><span lang="">electron configuration 1s<sup>2</sup> 2s<sup>2</sup>
2p<sup>2</sup><o:p></o:p></span></p><h4><span lang="">Nitrogen (Z = 7)<o:p></o:p></span></h4><p class="MsoNormal"><span lang="">electron configuration 1s<sup>2</sup> 2s<sup>2</sup>
2p<sup>3</sup><o:p></o:p></span></p><p class="MsoNormal"><span lang="">The next eleven elements follow the same
pattern, filling up the s and p orbitals of the third shell.<o:p></o:p></span></p><p class="MsoNormal"><span lang="">Potassium and calcium come next. The 3d
subshell is available, but remember that the 4s subshell has a lower energy, so
it is filled first i.e<o:p></o:p></span></p><h4><span lang="">Potassium (Z = 19 )<o:p></o:p></span></h4><p class="MsoNormal"><span lang="">electron configuration 1s<sup>2</sup> 2s<sup>2</sup>
2p<sup>6</sup> 3s<sup>2</sup> 3p<sup>6</sup> 4s<sup>1</sup> <o:p></o:p></span></p><p class="MsoNormal"><span lang="">Notice that we do not write 3d<sup>0</sup> in
the electron configuration. We leave it out.<o:p></o:p></span></p><p class="MsoNormal"><span lang="">Similarly, we can draw the box diagram for calcium
like this:<o:p></o:p></span></p><h4><span lang="">Calcium (Z = 20)<o:p></o:p></span></h4><p class="MsoNormal"><span lang="">electron configuration 1s<sup>2</sup> 2s<sup>2</sup>
2p<sup>6</sup> 3s<sup>2</sup> 3p<sup>6</sup> 4s<sup>2</sup></span></p><p class="MsoNormal"><span lang=""><o:p></o:p></span></p><p style="text-align: center; "><img src="https://res.cloudinary.com/drrz8xekm/image/upload/v1563003405/hw0hhxlp6krzgby0z9zt.png" data-filename="hw0hhxlp6krzgby0z9zt" style="width: 527.5px;"><span lang=""><br></span></p><p style="text-align: center; "><a href="https://commons.wikimedia.org/wiki/File:Klechkowski_rule_2.svg" target="_blank"><sup>The approximate order of filling of atomic orbitals, following the arrows from 1s to 7p. (After 7p the order includes orbitals outside the range of the diagram, starting with 8s.) Sharayanan - Own work, CC BY-SA 3.0</sup></a><span lang=""><br></span></p><h2><span lang="">FILLING THE d ORBITALS (Z = 21-30)<o:p></o:p></span></h2><p class="MsoNormal"><span lang="">The 4s Subshell has already been filled at
calcium, so now the 3d subshell, which is at a slightly higher energy level,
can begin to fill. Electrons spinning in the same direction first occupy the 3d
orbitals singly, since this helps to minimize electron repulsion.<o:p></o:p></span></p><p class="MsoNormal"><b>Notice
that t</b><span lang="">he chromium atom and the copper atom have only in
the 4s atomic orbital. <o:p></o:p></span></p><h2><span lang="">GALLIUM (Z = 31) TO KRYPTON (Z = 36)<o:p></o:p></span></h2><p class="MsoNormal"><span lang="">From gallium to krypton the 4p orbitals are
filled because they have the next highest energy level <o:p></o:p></span></p><h4><span lang="">Gallium (Z = 31)<o:p></o:p></span></h4><p class="MsoNormal"><span lang="">electron configuration 1s<sup>2</sup> 2s<sup>2</sup>
2p<sup>6</sup> 3s<sup>2</sup> 3p<sup>6</sup> 3d<sup>10</sup> 4s<sup>2 </sup>4p<sup>1</sup><o:p></o:p></span></p><h4><span lang="">Krypton (Z = 36)<o:p></o:p></span></h4><p class="MsoNormal"><span lang="">electron configuration 1s<sup>2</sup> 2s<sup>2</sup>
2p<sup>6</sup> 3s<sup>2</sup> 3p<sup>6</sup> 3d<sup>10</sup> 4s<sup>2 </sup>4p<sup>6</sup><o:p></o:p></span></p><h2><span lang="">ELECTRON CONFIGURATIONS AND THE PERIODIC TABLE<o:p></o:p></span></h2><p class="MsoNormal"><span lang="">When we know the electron configurations of
the elements, we can organize and explain the chemical properties of the
elements, because it is the electron that determine these properties. Long
before electrons were even known to exist, Mendeleev grouped together elements
with similar properties in his Periodic Table. You can read much more about
this in my previous article on </span><b><a href="https://www.steemstem.io/#!/@empressteemah/the-history-of-mendeleev-and-the-development-of-the-periodic-table" target="_blank">THE HISTORY OF MENDELEEV AND THE DEVELOPMENT OF THE PERIODIC TABLE</a></b><span lang=""><b>.</b> After you might have gone through the article you will know
about the Periodic Table, so let’s see how electron configurations fit in.</span><span style="font-size: 1rem;">&nbsp;</span></p><p class="MsoNormal"><span style="font-size: 1rem;">In Period 4, containing the transition
elements, electron</span><b style="font-size: 1rem;"> c</b><span style="font-size: 1rem;">onfigurations
show the two outermost subshells, because it is the d subshell that</span><b style="font-size: 1rem;"> is</b><span style="font-size: 1rem;"> being filled. Notice that the
elements in each of the eight main groups end</span><b style="font-size: 1rem;"> w</b><span style="font-size: 1rem;">ith the same number of electrons in their outer subshell. So
Group 7 always</span><b style="font-size: 1rem;"> h</b><span style="font-size: 1rem;">as a p</span><sup>5</sup><span style="font-size: 1rem;"> subshell
and Group 2 always has a filled s</span><sup>2</sup><span style="font-size: 1rem;"> orbital. The Periodic Table is</span><b style="font-size: 1rem;"> o</b><span style="font-size: 1rem;">ften divided into blocks, as is shown
in the diagram.</span></p><p class="MsoNormal" style="text-align: center; "><img src="https://res.cloudinary.com/drrz8xekm/image/upload/v1563003582/bwlibaywssfuwvrih3yl.png" data-filename="bwlibaywssfuwvrih3yl" style="width: 527.5px;"><span lang=""><b><o:p><br></o:p></b></span></p><p class="MsoNormal" style="text-align: center; "><a href="https://commons.wikimedia.org/wiki/File:Periodic_table_blocks_spdf_(32_column).svg" target="_blank"><sup>Electron configuration table. User:DePiep, CC BY-SA 3.0</sup></a><span lang=""><b><o:p><br></o:p></b></span></p><p class="MsoNormal"><span lang="">So when we know how electrons are arranged in
atoms, we have a better understanding of how the Periodic Table is arranged. It
groups elements together with similar properties, and we can now see that it is
the electron configuration that determines this similarity in properties.<o:p></o:p></span></p><h2><span lang="">SUMMARY<o:p></o:p></span></h2><p class="MsoNormal"><span lang="">When you have gone extensively through all my
posts on <b>MOLECULES IN INTERSTELLAR SPACE
AND A CLOSE LOOK AT ELECTRONS </b></span><a href="https://www.steemstem.io/#!/@empressteemah/molecules-in-interst-1561644120" target="_blank"><b>#1</b></a><span lang=""><b>, </b></span><a href="https://www.steemstem.io/#!/@empressteemah/molecules-in-interst-1561845181" target="_blank"><b>#2</b></a><span lang=""><b>,&nbsp;</b></span><a href="https://www.steemstem.io/#!/@empressteemah/molecules-in-interst-1562320779" target="_blank"><b>#3</b></a><span lang=""><b> and this final post</b>, you should be
able to comprehend the following ideas.<o:p></o:p></span></p><ul><li><span lang="">Evidence for the arrangement of electrons in
energy levels comes from the line emission spectra of atoms.</span></li><li>Energy levels are quantized, which means that
each level has a fixed amount of energy.</li><li>An electron can move from a lower to a higher
energy level by absorbing a quantum (packet) of energy. It releases the same
quantum of energy when it falls back, as a photon of light of a particular
frequency (which gives a line in the emission spectrum).</li><li>The arrangement of electrons in an atom is
called its electron configuration.</li><li>Energy levels and sub-levels are also known
as shells and subshells.</li><li>Shells are numbered 1, 2, 3 and so on. The
shell number is also known as the principal quantum number.</li><li>The higher the shell number, the higher is
its energy and the further the shell is from the nucleus.</li><li>Successive ionization energies of atoms
provide evidence of shells (energy levels).</li><li>Within each shell there are subshells
(sub-levels) s, p, d and f, of different energies. Shell 1 contains only an s
subshell. Shell 2 contains two subshells, s and p, while shell 3 contains three
subshells s, p and d.</li><li>A plot of first ionization energy against
atomic number provides evidence of subshells. In each subshell the electrons
are arranged in atomic orbitals.</li><li>Atomic orbitals are regions in the atom where
there is a very high probability of finding the electron.</li><li>There is one s atomic orbital in the s
subshell, three p orbitals in the p subshell, five d orbitals in the d subshell
and seven f orbitals in the f subshell.</li><li>Each atomic orbital can accommodate two electrons
of opposite spins.</li><li>Finally, the Periodic Table is arranged in
blocks, s, p, d and f, according to the subshell that is being filled.&nbsp;</li></ul><p class="MsoNormal"><span lang="">PS: I made this article very deep, more
detailed and extensive for the benefit of @steemstem courtesy of @chappertron.
He is a great motivator and <i>persuader</i>.
Lol<o:p></o:p></span></p><p class="MsoNormal"><span lang="">Thanks to y’all, for giving me the great
opportunity.<o:p></o:p></span></p><p>

























































































































































































</p><h2><span lang="">REFERENCES</span></h2><p class="MsoNormal"><a href="https://www.google.com/url?sa=t&amp;rct=j&amp;q=&amp;esrc=s&amp;source=web&amp;cd=1&amp;cad=rja&amp;uact=8&amp;ved=2ahUKEwjC5LmstLHjAhU4QxUIHecVA-IQFjAAegQIAhAB&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FIonization_energy&amp;usg=AOvVaw06jsvQBdy_s8rqyf4g3k3P" target="_blank">Ionization energy</a><span lang=""><o:p><br></o:p></span></p><p class="MsoNormal"><a href="https://www.google.com/url?sa=t&amp;rct=j&amp;q=&amp;esrc=s&amp;source=web&amp;cd=19&amp;cad=rja&amp;uact=8&amp;ved=2ahUKEwjGpOqYtLHjAhVnUxUIHXiSAnwQFjASegQIBxAB&amp;url=http%3A%2F%2Fchemed.chem.purdue.edu%2Fgenchem%2Ftopicreview%2Fbp%2Fch7%2Fie_ea.html&amp;usg=AOvVaw1Ah-FkZGZsVXBWpckN-Dt4" target="_blank">Ionization energy- chem.purdue</a><span lang=""><o:p><br></o:p></span></p><p class="MsoNormal"><a href="https://www.google.com/url?sa=t&amp;rct=j&amp;q=&amp;esrc=s&amp;source=web&amp;cd=14&amp;cad=rja&amp;uact=8&amp;ved=2ahUKEwjGpOqYtLHjAhVnUxUIHXiSAnwQFjANegQIABAB&amp;url=https%3A%2F%2Fwww.chemguide.co.uk%2Fatoms%2Fproperties%2Fies.html&amp;usg=AOvVaw2jEnVGmtERF_717zyL8l5a" target="_blank">atomic orbitals</a><span lang=""><o:p><br></o:p></span></p><p class="MsoNormal"><a href="https://www.google.com/url?sa=t&amp;rct=j&amp;q=&amp;esrc=s&amp;source=web&amp;cd=26&amp;cad=rja&amp;uact=8&amp;ved=2ahUKEwio4_yEtLHjAhVMRxUIHc67ClsQFjAZegQICBAB&amp;url=https%3A%2F%2Fwww.khanacademy.org%2Fscience%2Fbiology%2Fchemistry--of-life%2Felectron-shells-and-orbitals%2Fa%2Fthe-periodic-table-electron-shells-and-orbitals-article&amp;usg=AOvVaw04qYcAn7WPkehT2xAF1XQs" target="_blank">https://www.google.com/url?sa=t&amp;rct=j&amp;q=&amp;esrc=s&amp;source=web&amp;cd=26&amp;cad=rja&amp;uact=8&amp;ved=2ahUKEwio4_yEtLHjAhVMRxUIHc67ClsQFjAZegQICBAB&amp;url=https%3A%2F%2Fwww.khanacademy.org%2Fscience%2Fbiology%2Fchemistry--of-life%2Felectron-shells-and-orbitals%2Fa%2Fthe-periodic-table-electron-shells-and-orbitals-article&amp;usg=AOvVaw04qYcAn7WPkehT2xAF1XQs</a><span lang=""><o:p><br></o:p></span></p><p class="MsoNormal"><a href="https://www.google.com/url?sa=t&amp;rct=j&amp;q=&amp;esrc=s&amp;source=web&amp;cd=25&amp;cad=rja&amp;uact=8&amp;ved=2ahUKEwio4_yEtLHjAhVMRxUIHc67ClsQFjAYegQIBhAB&amp;url=https%3A%2F%2Fwww.chemguide.co.uk%2Fatoms%2Fproperties%2Fatomorbs.html&amp;usg=AOvVaw1RBKODGVZJpZspV_mrVwnh">https://www.google.com/url?sa=t&amp;rct=j&amp;q=&amp;esrc=s&amp;source=web&amp;cd=25&amp;cad=rja&amp;uact=8&amp;ved=2ahUKEwio4_yEtLHjAhVMRxUIHc67ClsQFjAYegQIBhAB&amp;url=https%3A%2F%2Fwww.chemguide.co.uk%2Fatoms%2Fproperties%2Fatomorbs.html&amp;usg=AOvVaw1RBKODGVZJpZspV_mrVwnh</a><a href="https://www.google.com/url?sa=t&amp;rct=j&amp;q=&amp;esrc=s&amp;source=web&amp;cd=25&amp;cad=rja&amp;uact=8&amp;ved=2ahUKEwio4_yEtLHjAhVMRxUIHc67ClsQFjAYegQIBhAB&amp;url=https%3A%2F%2Fwww.chemguide.co.uk%2Fatoms%2Fproperties%2Fatomorbs.html&amp;usg=AOvVaw1RBKODGVZJpZspV_mrVwnh" target="_blank"></a></p><p class="MsoNormal"><a href="https://en.wikipedia.org/wiki/Atomic_orbital">https://en.wikipedia.org/wiki/Atomic_orbital</a></p><p class="MsoNormal"><a href="https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Supplemental_Modules_(Physical_and_Theoretical_Chemistry)/Electronic_Structure_of_Atoms_and_Molecules/Atomic_Orbitals">https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Supplemental_Modules_(Physical_and_Theoretical_Chemistry)/Electronic_Structure_of_Atoms_and_Molecules/Atomic_Orbitals</a><a href="https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Supplemental_Modules_(Physical_and_Theoretical_Chemistry)/Electronic_Structure_of_Atoms_and_Molecules/Atomic_Orbitals" target="_blank"></a></p><p class="MsoNormal"><br><a href="https://opentextbc.ca/chemistry/chapter/6-4-electronic-structure-of-atoms-electron-configurations/" target="_blank">https://opentextbc.ca/chemistry/chapter/6-4-electronic-structure-of-atoms-electron-configurations/</a><br><span lang=""><o:p><br></o:p></span></p><p class="MsoNormal"><a href="https://en.wikipedia.org/wiki/Electron_configuration" target="_blank">https://en.wikipedia.org/wiki/Electron_configuration</a><span lang=""><o:p><br></o:p></span></p><p class="MsoNormal"><a href="https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Supplemental_Modules_(Physical_and_Theoretical_Chemistry)/Electronic_Structure_of_Atoms_and_Molecules/Electronic_Configurations/Electronic_Configurations_Intro" target="_blank">https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Supplemental_Modules_(Physical_and_Theoretical_Chemistry)/Electronic_Structure_of_Atoms_and_Molecules/Electronic_Configurations/Electronic_Configurations_Intro</a><span lang=""><o:p><br></o:p></span></p><p class="MsoNormal"><a href="https://www2.chemistry.msu.edu/faculty/reusch/VirtTxtJml/intro2.htm" target="_blank">https://www2.chemistry.msu.edu/faculty/reusch/VirtTxtJml/intro2.htm</a><span lang=""><o:p><br></o:p></span></p><p class="MsoNormal"><a href="https://courses.lumenlearning.com/introchem/chapter/periodic-table-position-and-electron-configuration/" target="_blank">https://courses.lumenlearning.com/introchem/chapter/periodic-table-position-and-electron-configuration/</a><span lang=""><o:p><br></o:p></span></p><p class="MsoNormal"><a href="https://chem.libretexts.org/Courses/College_of_Marin/Marin%3A_CHEM_114_-_Introductory_Chemistry_(Daubenmire)/09%3A_Electrons_in_Atoms_and_the_Periodic_Table/9.7%3A_Electron_Configurations_and_the_Periodic_Table" target="_blank">https://chem.libretexts.org/Courses/College_of_Marin/Marin%3A_CHEM_114_-_Introductory_Chemistry_(Daubenmire)/09%3A_Electrons_in_Atoms_and_the_Periodic_Table/9.7%3A_Electron_Configurations_and_the_Periodic_Table</a><span lang=""><o:p><br></o:p></span></p><p class="MsoNormal"><a href="https://chem.libretexts.org/Bookshelves/General_Chemistry/Book%3A_ChemPRIME_(Moore_et_al.)/05The_Electronic_Structure_of_Atoms/5.16%3A_Electron_Configurations_and_the_Periodic_Table" target="_blank">https://chem.libretexts.org/Bookshelves/General_Chemistry/Book%3A_ChemPRIME_(Moore_et_al.)/05The_Electronic_Structure_of_Atoms/5.16%3A_Electron_Configurations_and_the_Periodic_Table</a></p>
👍  , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , and 535 others
properties (23)
post_id77,886,556
authorempressteemah
permlinkmolecules-in-interst-1563004897
categorysteemstem
json_metadata{"tags":["steemstem","chemistry","science","stemng"],"app":"steemstem"}
created2019-07-13 08:01:42
last_update2019-07-13 08:01:42
depth0
children7
net_rshares30,640,825,254,762
last_payout2019-07-20 08:01:42
cashout_time1969-12-31 23:59:59
total_payout_value7.750 SBD
curator_payout_value2.594 SBD
pending_payout_value0.000 SBD
promoted0.000 SBD
body_length29,080
author_reputation6,812,920,690,579
root_title"MOLECULES IN INTERSTELLAR SPACE AND A CLOSE LOOK AT ELECTRONS #4"
beneficiaries
0.
accountsteemstem
weight500
max_accepted_payout1,000,000.000 SBD
percent_steem_dollars10,000
author_curate_reward""
vote details (599)
@chappertron ·
Very nice, thank you for this article. Now you can refer anytime to this nice written piece of information. Thanks & Respect
Chapper
properties (22)
post_id77,890,815
authorchappertron
permlinkpukuvz
categorysteemstem
json_metadata{"tags":["steemstem"],"app":"steemit\/0.1"}
created2019-07-13 11:07:09
last_update2019-07-13 11:07:09
depth1
children1
net_rshares0
last_payout2019-07-20 11:07:09
cashout_time1969-12-31 23:59:59
total_payout_value0.000 SBD
curator_payout_value0.000 SBD
pending_payout_value0.000 SBD
promoted0.000 SBD
body_length132
author_reputation24,484,367,468,222
root_title"MOLECULES IN INTERSTELLAR SPACE AND A CLOSE LOOK AT ELECTRONS #4"
beneficiaries[]
max_accepted_payout1,000,000.000 SBD
percent_steem_dollars10,000
@empressteemah ·
Thank you, @chappertron. I really appreciate.
properties (22)
post_id77,908,934
authorempressteemah
permlinkpulpnr
categorysteemstem
json_metadata{"tags":["steemstem"],"users":["chappertron"],"app":"steemit\/0.1"}
created2019-07-13 22:11:57
last_update2019-07-13 22:11:57
depth2
children0
net_rshares0
last_payout2019-07-20 22:11:57
cashout_time1969-12-31 23:59:59
total_payout_value0.000 SBD
curator_payout_value0.000 SBD
pending_payout_value0.000 SBD
promoted0.000 SBD
body_length45
author_reputation6,812,920,690,579
root_title"MOLECULES IN INTERSTELLAR SPACE AND A CLOSE LOOK AT ELECTRONS #4"
beneficiaries[]
max_accepted_payout1,000,000.000 SBD
percent_steem_dollars10,000
@steemstem ·
re-empressteemah-molecules-in-interst-1563004897-20190714t040732938z
<div class='text-justify'> <div class='pull-left'> <center> <br /> <img width='200' src='https://res.cloudinary.com/drrz8xekm/image/upload/v1553698283/weenlqbrqvvczjy6dayw.jpg'> </center>  <br/> <br /> </div>

This post has been voted on by the **SteemSTEM** curation team and voting trail. It is elligible for support from <b><a href='https://www.steemstem.io/#!/@curie'>@curie</a></b> and <b><a href='https://www.steemstem.io/#!/@utopian-io'>@utopian-io</a></b>.<br /> 

If you appreciate the work we are doing, then consider supporting our witness [**stem.witness**](https://steemconnect.com/sign/account_witness_vote?approve=1&witness=stem.witness). Additional witness support to the [**curie witness**](https://steemconnect.com/sign/account_witness_vote?approve=1&witness=curie) and [**utopian-io witness**](https://steemconnect.com/sign/account_witness_vote?approve=1&witness=utopian-io) would be appreciated as well.<br /> 

For additional information please join us on the [**SteemSTEM discord**]( https://discord.gg/BPARaqn) and to get to know the rest of the community!<br />

Thanks for having added <b><a href='https://www.steemstem.io/#!/@steemstem'>@steemstem</a></b> as a beneficiary to your post. This granted you a stronger support from SteemSTEM.<br />

Thanks for having used the <b><a href='https://www.steemstem.io'>steemstem.io</a></b> app. You got a stronger support!</div>
properties (22)
post_id77,916,749
authorsteemstem
permlinkre-empressteemah-molecules-in-interst-1563004897-20190714t040732938z
categorysteemstem
json_metadata{"app":"bloguable-bot"}
created2019-07-14 04:07:36
last_update2019-07-14 04:07:36
depth1
children0
net_rshares0
last_payout2019-07-21 04:07:36
cashout_time1969-12-31 23:59:59
total_payout_value0.000 SBD
curator_payout_value0.000 SBD
pending_payout_value0.000 SBD
promoted0.000 SBD
body_length1,396
author_reputation187,643,417,195,608
root_title"MOLECULES IN INTERSTELLAR SPACE AND A CLOSE LOOK AT ELECTRONS #4"
beneficiaries[]
max_accepted_payout1,000,000.000 SBD
percent_steem_dollars10,000
@steemitboard ·
Congratulations @empressteemah! You have completed the following achievement on the Steem blockchain and have been rewarded with new badge(s) :

<table><tr><td><img src="https://steemitimages.com/60x70/http://steemitboard.com/@empressteemah/voted.png?201907140537"></td><td>You received more than 8000 upvotes. Your next target is to reach 9000 upvotes.</td></tr>
</table>

<sub>_You can view [your badges on your Steem Board](https://steemitboard.com/@empressteemah) and compare to others on the [Steem Ranking](https://steemitboard.com/ranking/index.php?name=empressteemah)_</sub>
<sub>_If you no longer want to receive notifications, reply to this comment with the word_ `STOP`</sub>



###### [Vote for @Steemitboard as a witness](https://v2.steemconnect.com/sign/account-witness-vote?witness=steemitboard&approve=1) to get one more award and increased upvotes!
properties (22)
post_id77,918,785
authorsteemitboard
permlinksteemitboard-notify-empressteemah-20190714t055141000z
categorysteemstem
json_metadata{"image":["https:\/\/steemitboard.com\/img\/notify.png"]}
created2019-07-14 05:51:39
last_update2019-07-14 05:51:39
depth1
children0
net_rshares0
last_payout2019-07-21 05:51:39
cashout_time1969-12-31 23:59:59
total_payout_value0.000 SBD
curator_payout_value0.000 SBD
pending_payout_value0.000 SBD
promoted0.000 SBD
body_length865
author_reputation33,282,981,394,546
root_title"MOLECULES IN INTERSTELLAR SPACE AND A CLOSE LOOK AT ELECTRONS #4"
beneficiaries[]
max_accepted_payout1,000,000.000 SBD
percent_steem_dollars10,000
@utopian-io ·
#### Hi @empressteemah!

Your post was upvoted by Utopian.io in cooperation with @steemstem - supporting knowledge, innovation and technological advancement on the Steem Blockchain.

#### Contribute to Open Source with utopian.io
Learn how to contribute on <a href='https://join.utopian.io'>our website</a> and join the new open source economy.

**Want to chat? Join the Utopian Community on Discord https://discord.gg/h52nFrV**
properties (22)
post_id77,947,803
authorutopian-io
permlinkre-molecules-in-interst-1563004897-20190714t235644z
categorysteemstem
json_metadata{"app":"beem\/0.20.17"}
created2019-07-14 23:56:45
last_update2019-07-14 23:56:45
depth1
children0
net_rshares0
last_payout2019-07-21 23:56:45
cashout_time1969-12-31 23:59:59
total_payout_value0.000 SBD
curator_payout_value0.000 SBD
pending_payout_value0.000 SBD
promoted0.000 SBD
body_length428
author_reputation152,913,012,544,965
root_title"MOLECULES IN INTERSTELLAR SPACE AND A CLOSE LOOK AT ELECTRONS #4"
beneficiaries[]
max_accepted_payout1,000,000.000 SBD
percent_steem_dollars10,000
@lemouth ·
7o28yuoqh
Once again, a very nice and detailed post on this topic. This could be useful for anyone who would like to learn a little bit about it. Thanks for sharing!
👍  
properties (23)
post_id78,068,757
authorlemouth
permlink7o28yuoqh
categorysteemstem
json_metadata{"tags":"steemstem","app":"steemstem"}
created2019-07-18 06:32:12
last_update2019-07-18 06:32:12
depth1
children1
net_rshares58,921,742
last_payout2019-07-25 06:32:12
cashout_time1969-12-31 23:59:59
total_payout_value0.000 SBD
curator_payout_value0.000 SBD
pending_payout_value0.000 SBD
promoted0.000 SBD
body_length155
author_reputation152,522,295,653,901
root_title"MOLECULES IN INTERSTELLAR SPACE AND A CLOSE LOOK AT ELECTRONS #4"
beneficiaries[]
max_accepted_payout1,000,000.000 SBD
percent_steem_dollars10,000
author_curate_reward""
vote details (1)
@empressteemah ·
y7pfeplto
Thanks for coming. I'm glad you like the post. 
👍  
properties (23)
post_id78,123,120
authorempressteemah
permlinky7pfeplto
categorysteemstem
json_metadata{"tags":"steemstem","app":"steemstem"}
created2019-07-19 16:57:21
last_update2019-07-19 16:57:21
depth2
children0
net_rshares56,693,071
last_payout2019-07-26 16:57:21
cashout_time1969-12-31 23:59:59
total_payout_value0.000 SBD
curator_payout_value0.000 SBD
pending_payout_value0.000 SBD
promoted0.000 SBD
body_length47
author_reputation6,812,920,690,579
root_title"MOLECULES IN INTERSTELLAR SPACE AND A CLOSE LOOK AT ELECTRONS #4"
beneficiaries[]
max_accepted_payout1,000,000.000 SBD
percent_steem_dollars10,000
author_curate_reward""
vote details (1)